A ¹⁵N-¹H Dipolar CSA Solid-State NMR Study of Polymorphous Polyglycine (-CO-CD₂-¹⁵NH-), I. Sack¹, S. Macholl¹, F. Wehrmann¹, J. Albrecht¹, H. H. Limbach¹, F. Fillaux², M. H. Baron², and G. Buntkowsky¹ ¹ Freie Universität Berlin, Institut für Chemie, Berlin, Germany ² LADIR-CNRS, Thiais, France Received June 4, 1999; revised July 13, 1999 **Abstract.** The solid-state 1 H MAS (magic-angle spinning), 2 H static, 15 N CP (cross polarization)-MAS and 15 N- 1 H dipolar CSA (chemical shielding anisotropy) NMR (nuclear magnetic resonance) spectra of two different modifications of C_α -deuterated 15 N-polyglycine, namely PG I and PG II (-CO-CD₂- 15 NH-) $_n$ are measured. The data from these spectra are compared to previous NMR, infrared, Raman and inelastic neutron scattering work. The deuteration of C_α eliminates the largest intramolecular 1 H- 1 H dipolar coupling. The effect of the remaining (N)H-(N)H interaction (\sim 5 kHz) is not negligible compared to the 15 N- 1 H coupling (about 10 kHz). Its effect on the dipolar CSA spectra, described as a two-spin system, is analyzed analytically and numerically and it is shown that those parts of the powder spectrum, which correspond to orientations with a strong dipolar 15 N- 1 H interaction, can be described as an effective two-spin system, permitting the measurement of the strength of the 15 N- 1 H dipolar interaction and the orientation of the dipolar vector with respect to the 15 N CSA frame. While in the PG II system the 15 N CSA tensor is collinear with the amide plane, in the PG I system the CSA tensor is tilted ca. 16 ° with respect to the $(\delta_{11}\delta_{22})$ CSA plane. ## 1 Introduction Poly-α-aminoacids are model systems for the studies of hydrogen bonding in polypeptides and proteins. This is a key factor for the stabilization of secondary and tertiary structures. Polyglycine (-CO-CH₂-NH-)_n is the homopolypeptide of the simplest amino acid. There is no side chain and thus no asymmetric C_α . This polymer is unique for the evaluation of the conformational thermodynamics and the analysis of the spectral features of the backbone [1–4]. In the solid state, polyglycine exhibits structural polymorphism and may adopt two different secondary structures, namely a β-sheet (polyglycine I, PG I) and a 3₁-helix (polyglycine II, PG II) (Fig. 1). These conformations are related to the biologically important structures of collagen, silk fibroin and aperiodic glycine-rich proteins [5–8], as well as nylon materials [9].