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Abstract

Physiological aging of the brain is accompanied by ubiquitous degeneration of neurons and oligodendrocytes. An alteration
of the cellular matrix of an organ impacts its macroscopic viscoelastic properties which can be detected by magnetic
resonance elastography (MRE) – to date the only method for measuring brain mechanical parameters without intervention.
However, the wave patterns detected by MRE are affected by atrophic changes in brain geometry occurring in an
individual’s life span. Moreover, regional variability in MRE-detected age effects is expected corresponding to the regional
variation in atrophy. Therefore, the sensitivity of brain MRE to brain volume and aging was investigated in 66 healthy
volunteers aged 18–72. A linear decline in whole-brain elasticity was observed (20.75%/year, R-square = 0.59, p,0.001); the
rate is three times that determined by volume measurements (20.23%/year, R-square = 0.4, p,0.001). The highest decline
in elasticity (20.92%/year, R-square = 0.43, p,0.001) was observed in a region of interest placed in the frontal lobe with
minimal age-related shrinkage (20.1%, R-square = 0.06, p = 0.043). Our results suggest that cerebral MRE can measure
geometry-independent viscoelastic parameters related to intrinsic tissue structure and altered by age.
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Introduction

Aging is an inevitable aspect of life. The human brain, too, is

destined to undergo this process with mature brain tissue

becoming progressively disorganized and degraded with age,

indicated by a progressive loss of neurons and oligodendrocytes in

the course of life [1]. This age-related neurodegeneration is likely

to alter the cellular matrix of the brain and thus to have an impact

on its viscoelastic properties such as softness, stiffness, and

mechanical friction [2]. Brain atrophy occurring as a consequence

of physiological aging as well as pathological conditions has been

reliably quantified by conventional brain magnetic resonance

imaging (MRI). However, the capability of conventional MRI to

detect changes in brain viscoelastic properties is limited. Against

this background, brain magnetic resonance elastography (MRE)

[3] was developed as a novel method for detecting changes in

cerebral viscoelasticity by combining MRI with acoustic waves

[4,5,6,7,8,9,10]. Recently, we have shown that brain MRE can

provide reproducible information on brain elasticity in healthy

volunteers [11,12] and subjects with neurological conditions such

as multiple sclerosis [13] and hydrocephalus [14]. In particular, we

demonstrated that stiffness of the adult brain is continuously

decreasing with age [2]. However, recovery of elastic moduli from

MRE wave images is based on the solution of the inverse problem

of propagating shear waves, which is mathematically ill-posed and

thus error prone [15,16]. Hence, changing geometrical boundary

conditions as given by brain atrophy in the course of aging may

confound MRE-derived elasticity parameters. Therefore, we

performed a cross-sectional exploratory study to investigate the

sensitivity of brain MRE to physiological aging and variations in

brain volume possibly influencing geometrical boundary condi-

tions in wave inversion.

Methods

Sample
This study was approved by the ethics committee of the Charité

Berlin (directives EA1/006/07 and EA1/182/07) and written

informed consent was obtained from all participants. Sixty-six

volunteers without overt neurological or psychiatric conditions

were included in this study (mean age 45.92 years, standard

deviation [SD] 16.21 years, age range 18 to 72 years; 31 men,

mean age 42.58 years, SD 16.77 years, age range 20 to 72 years;

35 women, mean age 48.89 years, SD 15.33 years, age range 18 to

72 years).

Data acquisition
Experiments were run on a standard 1.5 T clinical MRI

scanner (Siemens, Erlangen, Germany). For MRI volumetry a

magnetized prepared rapid gradient echo (MPRAGE) sequence

(TR/TE = 2110/4.4 milliseconds, TI 1100 ms, flip angle 15u,
resolution 1 mm3) was used for acquiring three-dimensional brain
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data. For MRE four adjacent image slices were selected based on

MRI volumetry data. The image slices were positioned in

transverse orientation through the brain and parallel to the genu

and splenium of the corpus callosum in a central slab as indicated

in Figure 1a. Imaging of wave data was based on the principle of

fractional motion encoding by exploding the broad-band encoding

Figure 1. MRE experimental setup. a: Typical positions of four adjacent image slices used for multifrequency MRE (slice thickness 6 mm). The
image slices were angulated around the left-right axis to compensate for neck flexion, yielding slices parallel to genu and splenium of the corpus
callosum. b: Sketch of the imaging sequence. A spin-echo single-shot echo-planar imaging (EPI) sequence was sensitized to motion by a sinusoidal
motion encoding gradient (MEG) comprising four cycles of 60 Hz sinusoids. MEG direction was through-plane. The wave generator was triggered by
the sequence at the time points demarcated by the asterisks. The waveform was composed by four harmonic frequencies from 25 to 62.5 Hz. The
wave trigger was shifted consecutively 32 times relative to the MEG in order to capture the propagation of the waves through the head.
doi:10.1371/journal.pone.0023451.g001

Figure 2. Four image slices from T1-weighted volume MRI data compliant with MRE slice positions (upper row). Color-coded MRE
wave data of 50 Hz vibrations. Blue colors scale vibrations towards the reader, while red to yellow colors scale motion beneath the image plane. The
maximum tissue deflection is approximately 80 mm (mid row). Real-part modulus images corresponding to 50 Hz vibration frequency with specific
regions of interest (ROIs) investigated in this study. Green lines: ROIfull, blue lines: ROIinner, red lines: ROIfrontal, magenta lines: ROIposterior, outer green
lines excluding ventricles: ROIfull (bottom line).
doi:10.1371/journal.pone.0023451.g002
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characteristics of a four-period sinusoidal motion-encoding

gradient of 60 Hz center frequency (Fig. 1b) [11]. The motion-

encoding gradient (MEG) in the through-plane direction was

incorporated in a single-shot spin echo echo-planar imaging

sequence. Further MRE data acquisition parameters are: time of

image sample repetition (TR), 3.0 sec; time to echo (TE), 148 ms;

pixel bandwidth, 1.5 kHz; in-plane resolution, 1.5 mm61.5 mm;

slice thickness, 6 mm; matrix size, 1286128; MEG strength,

35 mT/m. A custom-made head cradle was used for multifre-

quency head stimulation as described in [2,12]. The cradle was

vibrated by a superposition of four harmonic frequencies of f = 25,

37.5, 50, and 62.5 Hz with an input waveform as shown in [11].

Acquisition was repeated 64 times for each image slice with an

alternating sign of motion sensitization and an increasing delay

between start of vibration and motion encoding. As a result, 32

time-resolved phase-difference wave images were obtained in each

image slice.

Data processing
For each image slice, 32 phase–difference wave images were

Fourier-transformed in time for calculating four complex wave

images U(x, f ) with f = 25, 37.5, 50, and 62.5 Hz. In Figure 2,

second row, real part wave images U(x, f ) for f = 50 Hz are shown

in all four image slices. For comparison, brain biomechanical

properties are reported based on the complex shear modulus,

G*(x, f ), in the parenchyma excluding the ventricles. Using a

locally constant assumption for the complex modulus, G*(x, f ),

the relationship G*(x, f ) = 2(2pf )2rU(x, f )/DU(x, f ), where r =

1000 kg/m3 is the tissue density and D is the 2D-Laplacian, was

Table 1. Description of volume data and viscoelasticity
parameters.

All subjects Men Women

Brain volume

Volumea 1.64 (0.10) 1.64 (0.10) 1.63 (0.09)

Volume WMa 0.86 (0.06) 0.87 (0.06) 0.85 (0.06)

Volume GMa 0.78 (0.06) 0.78 (0.06) 0.78 (0.06)

BPF 0.976 (0.010) 0.977 (0.008) 0.975 (0.011)

Storage and loss modulus (full brain)

�GG0 (25 Hz)b 1.64 (0.17) 1.66 (0.19) 1.61 (0.15)

�GG0 (37.5 Hz) b 1.98 (0.23) 2.01 (0.24) 1.96 (0.23)

�GG0 (50 Hz) b 2.12 (0.25) 2.14 (0.27) 2.10 (0.23)

�GG0 (62.5 Hz) b 2.58 (0.27) 2.64 (0.29) 2.52 (0.24)

�GG00 (25 Hz) b 0.80 (0.12) 0.80 (0.13) 0.79 (0.12)

�GG00 (37.5 Hz) b 0.91 (0.12) 0.94 (0.13) 0.88 (0.11)

�GG00 (50 Hz) b 1.08 (0.16) 1.09 (0.17) 1.07 (0.15)

�GG00 (62.5 Hz) b 1.31 (0.18) 1.36 (0.18) 1.27 (0.17)

Springpot parameter m [kPa]

mfull
b 3.25 (0.52) 3.32 (0.57) 3.19 (0.46)

minner
b 4.45 (0.74) 4.50 (0.81) 4.41 (0.69)

mcortex
b 2.22 (0.35) 2.28 (0.40) 2.17 (0.29)

mfrontal
b 3.20 (0.73) 3.47 (0.75) 2.96 (0.63)

mposterior
b 2.70 (0.57) 2.66 (0.59) 2.74 (0.55)

Springpot parameter a

afull 0.291 (0.012) 0.292 (0.012) 0.290 (0.012)

ainner 0.323 (0.012) 0.323 (0.012) 0.323 (0.013)

acortex 0.255 (0.016) 0.256 (0.015) 0.253 (0.016)

afrontal 0.269 (0.023) 0.273 (0.025) 0.266 (0.021)

aposterior 0.298 (0.020) 0.300 (0.020) 0.296 (0.020)

The standard deviations (SD) are given in brackets.
adm3,
bkPa.
doi:10.1371/journal.pone.0023451.t001

Figure 3. Regional variation in the shear modulus of in vivo
brain. All differences between the regions are statistically significant
(p,0.001). The boxplot depicts the lower and upper quartiles as well as
the median. Full data range (without outliers) is presented by whiskers.
Crosses depict outliers.
doi:10.1371/journal.pone.0023451.g003

Figure 4. Regional variation in the parameter a representing
the slope of the modulus dispersion G 0*va and G 0*va

according to the springpot model. As a is sensitive to the
microstructure geometry of biological tissue it is named ‘geometry’
parameter. Similar to m (Figure 3), all regional differences are statistically
significant (p,0.001).
doi:10.1371/journal.pone.0023451.g004
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used to calculate G*(x, f ) in all image planes at each vibration

frequency. The global �GG � ( f ) was calculated by averaging

G*(x, f ) over all parenchymal spatial points in all planes.

According to the springpot model, �GG � ( f )~k(2pfi)a, where

k~m1{aga. k, a are frequency-independent fit variables of
�GG � ( f ). The parameter m is the global shear elasticity, g is the

viscous damping, and a is a measure of the elastic lossy relation.

For example, a = 0 corresponds to lossless elastic behavior with

shear elasticity, m and a = 1 to lossy viscous damping with viscosity,

g. The global storage modulus, �GG0( f )~Re�GG � ( f ), and global

loss modulus, �GG00(f )~Im�GG � ( f ), are tabulated. The parameters

k and a were determined by a least square fit over frequency of the

tabulated global �GG � ( f ) using the springpot model. We present

tables of �GG0(f ), �GG00( f ), a, and m, where for the latter tabulation we

assume g = 3.7 Pa. This value of g was previously determined as

an approximated value of viscosity in human brain tissue [2]. As

there are no other frequency-independent viscosity values of in

vivo human brain in literature we propose this value for translating

k to elasticity. This scaling of k from a dimension that depends on

a (Pa?sa) to an elasticity improves the comparability of multifre-

quency MRE results to other elastography studies without

changing the significance of the determined mechanical constants.

For illustration G’ (x, f ) for f = 50 Hz is shown in the bottom

row of Figure 2. Furthermore, the regions of interest (ROIs) we

considered are drawn. The main region is ROIfull, which includes

the entire brain parenchyma visible in the image slice and is thus

associated with ‘global’ mechanical parameters �GG0( f ), �GG00( f ),
mfull and afull. We also considered four areas located in the cortical,

inner, posterior, and frontal regions of the brain as outlined by

green (ROIcortex), blue (ROIinner), magenta (ROIposterior), and red

lines (ROIfrontal) superimposed on the grayscale images in Figure 2.

ROIcortex was automatically generated by accounting for a ten-

pixel wide ring in the periphery of ROIfull. Inversely, ROIinner was

derived by eroding eight pixels from the outer edge of ROIfull.

ROIfrontal and ROIposterior depict the upper and bottom quarter of a

16-pixel wide ring in the periphery of ROIfull, respectively. The

frequency-independent constitutive parameters m and a are

tabulated for these subregions.

Normalized volumes of the total brain, gray matter (GM), white

matter (WM), and brain parenchyma fraction (BPF) were

calculated using a method for total brain volume measurement

(SIENAX software) with the default BET options (Brain

Extraction Tool; part of FSL4.0 Software Library; www.fmrib.

ox.ac.uk/fsl).

Statistical analysis
Results are expressed as arithmetic mean 6 standard deviation.

Correlations between age, BPF, and total brain volume on the one

hand and parameters of viscoelastic properties m and a on the

other were calculated by Spearman’s correlation coefficient. To

investigate the influence of age, BPF, and total brain volume

(independent variables) on elasticity parameter m (dependent

variable), a multivariate linear regression analysis was performed.

A two-tailed p-value , 0.05 was considered statistically significant.

All tests were performed as constituting exploratory data analyses,

such that no adjustments for multiple testing had to be made. All

calculations were performed with SPSS Version 18 (SPSS, Inc.,

Chicago, IL, USA).

Results

Mean total brain volume and BPF of all subjects were

1.6460.10 litre and 0.97660.010, respectively. No significant

sex difference was observed in any of the tabulated volume-related

parameters (Table 1). Similarly, no significant sex differences in

the complex modulus data given in Table 1 were deducible from

our cohort. The dispersion of �GG � (f )translated to frequency-

independent viscoelastic constants m and a showed significant (p

always , 0.001) variation between regions (Figures 3 and 4). The

highest shear modulus was found with minner = 4.4560.81 kPa,

compared to which mcortex = 2.2260.35 kPa was reduced by a

factor of two. Correspondingly, a was highest within the inner

region of the brain (ainner = 0.32360.012) and lowest in the

cortical area (acortex = 0.25560.016). All descriptive values of

volumes, complex moduli, and springpot-related viscoelastic

constants are summarized in Table 1.

Figure 5 shows the decrease in total brain volume and white

matter volume with years of age. All parameters of brain volume

(total brain volume, WM, GM, BPF) showed a strong negative

correlation with age (Table 2). Total brain volume decreased by

Figure 5. Decrease in total brain volume and WM volume with age represented by linear regression of MRI volume data.
doi:10.1371/journal.pone.0023451.g005
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0.23% per year (R-square = 0.4), whereas the relative annual

change in BPF (20.04%,) was much weaker but correlated better

with the linear model (R-square = 0.42). All complex moduli

linearly decreased with age on the order of 0.5% to 0.6% per year

with squared correlation coefficients ranging from 0.37 to 0.55.

The loss of shear elasticity in the entire brain (mfull) was even more

pronounced with an annual rate of 20.75% (R-square = 0.59).

Figure 6 displays linear and quadratic regressions of mfull.

Compared to linear regression, the correlation of data with the

quadratic fit is slightly better (R-square = 0.63), indicating that

there is a maximum of human brain shear modulus during

adolescence. The age-related decrease in brain elasticity was most

prominent in the interior region of the brain and in the frontal

lobe, which is revealed by relative annual changes in minner and

mfrontal of 20.80% (R-square = 0.61) and 20.92% (R-square =

0.43), respectively. In contrast, ainner and afrontal were constant or

only weakly changing as revealed by annual rates of 20.01% and

20.18% and R-square values of 0.00 and 0.12. The age

dependency of all investigated volume- and elasticity-based

parameters is given in Table 2. Moreover, Table 2 summarizes

the change in ROI areas for providing information about possible

influences of boundary effects on MRE viscoelasticity data. A very

weak interaction of ROI area with age was observable. Rates of

change and correlation coefficients were similar to those

encountered for a. The dependency of m and a on total brain

volume and BPF was investigated by multivariate linear

regression. Both m and a correlated positively with BPF and total

brain volume; however, total brain volume (standardized beta

0.313, p = 0.003) was an independent predictor of m besides age

(standardized beta 20.497, p,0.001), while BPF was not

(standardized beta 0.110, p = 0.296). m and a linearly increased

with brain volume by 3.79 kPa/litre (R-square = 0.488) and 0.05

1/litre (R-square = 0.178), respectively.

Discussion

This study represents the first systematic investigation of

individual brain geometry and in vivo viscoelastic constants

measured by MRE. Brain geometry was quantified using

established 3D-MRI and automatic threshold-based image

segmentation. We observed a loss of 3.7 cm3/year of brain tissue

(GM+WM), which is in agreement with previous studies

[17,18,19]. The decrease in brain viscoelasticity with age was

shown in [2] but without taking brain atrophy or regional

variations in mechanical parameters into account. This previous

study reports mean shear modulus values of total brain of

m = 1.94 kPa, which is lower than that observed in the current

study. This difference is most presumably due to systematically

different slice positions. As mentioned in the Methods section,

transverse image slices were aligned through the center of the

lateral ventricles other than in [2,11,12,13], where a more

peripheral slab of the brain through the upper part or slightly

above the ventricles was selected. A higher proportion of sulci in

that area might cause increased wave scattering, which reduces

apparent wavelengths analyzed by inversion algorithms [20]. The

central transverse slab for 2D MRE as used in our current study

seems to reproduce elasticity values encountered in 3D MRE [9].

At any rate, the apparent sensitivity of MRE to slice positioning

motivates studying geometry–elasticity interactions in cerebral

MRE. The results presented here allow us to draw conclusions

with respect to i) region-specific m and a-values, ii) regional effects

of aging on m, and iii) the interaction of brain atrophy and

elasticity decrease with age.

Regional differences in brain viscoelasticity
In literature a large variety of shear modulus values of brain

tissue can be encountered as well as different statements about the

relative difference in m between white and gray matter [8,9].

Although the order of our modulus data falls in the range of [9] we

observed a lower shear modulus in ROIcortex than in ROIinner,

which seems to support observations of [8] about a higher stiffness

in WM than in GM. However, it is important to note that our sub-

ROIs are not related to anatomical structures but to the boundary

of the area of brain parenchyma visible in the image slice. mcortex

and acortex are rather incidentally correlated with the anatomical

subregion of cortical GM, whose peripheral position is inherently

Table 2. Age dependencies of volume data and
viscoelasticity parameters.

Parameter X
Annual
change in X

Annual
change in
X [%] R-square P

Brain volume

Total volumea 23.72 20.23 0.40 ,0.001

Volume WMa 21.52 20.18 0.16 0.001

Volume GMa 22.20 20.28 0.37 ,0.001

BPF 23.8961024 20.04 0.42 ,0.001

Storage and loss moduli

�GG0 (25 Hz)b 27.71 20.47 0.53 ,0.001

�GG0 (37.5 Hz)b 210.60 20.53 0.55 ,0.001

�GG0 (50 Hz)b 210.64 20.50 0.48 ,0.001

�GG0 (62.5 Hz)b 211.98 20.46 0.52 ,0.001

�GG00 (25 Hz)b 24.61 20.58 0.37 ,0.001

�GG00 (37.5 Hz)b 25.04 20.55 0.44 ,0.001

�GG00 (50 Hz)b 27.09 20.65 0.52 ,0.001

�GG00 (62.5 Hz)b 27.28 20.56 0.42 ,0.001

Springpot parameter m

mfull
b 224.52 20.75 0.59 ,0.001

minner
b 235.80 20.80 0.61 ,0.001

mcortex
b 213.93 20.63 0.42 ,0.001

mfrontal
b 229.36 20.92 0.43 ,0.001

mposterior
b 212.70 20.47 0.13 0.003

Springpot parameter a

afull 20.00032 20.11 0.19 ,0.001

ainner 20.00003 20.01 0.00 0.784

acortex 20.00025 20.10 0.07 0.036

afrontal 20.00050 20.18 0.12 0.004

aposterior 20.00035 20.12 0.08 0.020

MRE ROI

ROIfull
c 224.7 20.16 0.08 0.023

ROIinner
c 219.0 20.18 0.06 0.039

ROIcortex
c 25.7 20.09 0.09 0.014

ROIfrontal
c 22.9 20.10 0.06 0.043

ROIposterior
c 21.5 20.05 0.02 0.319

The annual change is the slope of the regression line with dimensions
acm3/year,
bPa/year and
cmm2/year.
doi:10.1371/journal.pone.0023451.t002
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susceptible to boundary effects in parameter recovery by discrete

wave inversion. Therefore, only limited conclusions about the

difference between WM and GM viscoelasticity can be made. The

fact that mcortex and minner differed by more than a factor of two

strongly indicates that WM has a higher stiffness than GM. This

observation corresponds to the theory that the mechanical matrix

of the brain is established by soft-elastic neuronal fibers embedded

in even softer glial cells [21]. A higher amount of neuronal fiber

tracks would then result in a higher stiffness, particularly in

direction of the fiber tracks. However, our study does not account

for anisotropic viscoelastic properties of brain matter – a field of

research which clearly needs further work. Our interpretation that

the neuronal fiber network determines minner is supported by the

higher values of ainner compared to acortex: According to the theory

of the dynamics of G* in generalized Gaussian structures, a
increases with the degree of vibrational freedoms or, in other

words, an increasing (fractal) dimensionality of the mechanical

network yields a higher power a for G0*va [22,23].

Regional effects of aging on brain viscoelasticity
It is known from volumetric MRI that age-related atrophy

affects brain regions at different rates. In elderly adults WM

atrophy exceeds GM loss and atrophy in the frontal lobe is higher

than in the occipital lobe [18]. In contrast, the change rates of

minner and mcortex given in Table 2 suggest a faster decline of GM

than WM. However, it is known that GM volume steadily shrinks

from early adolescence, while WM volume increases up to the age

range of 30 to 40 years [17]. Such age effects may invert the

relative atrophy between GM and WM when accounting for

younger volunteers. The much higher decrease rate of ROIinner

compared to ROIcortex does not reflect enhanced WM atrophy but

an increase of the ventricles with age. There is a trend for ROIfrontal

to decrease slightly with age, whereas ROIposterior is not

significantly varying. In contrast, mfrontal changes with more than

20.92% per year, which is twice the rate of mposterior. Since

ROIfrontal and ROIposterior are not significantly different, we

conclude that the relatively strong age effect on mfrontal is mainly

due to tissue-intrinsic structure alteration. Taking additionally a
into account (which is sensitive to the network topology) one can

speculate that the geometry of the mechanical tissue matrix is

conserved during aging, while the rigidity of structure-building

elements such as neurons decreases. Volume seems less influenced

by this process since frontal lobe atrophy is on the order of only

0.3% per year [18]. However, a closer look at gyral anatomy by

high-resolution anatomical MRI reveals a more rapid atrophy in

frontal sulci as compared to occipital sulci [24] which correlates to

our observations on mfrontal and mposterior. Combining these

findings, two conclusions can be drawn: On one hand age-related

changes in gyral anatomy may have influenced our MRE

measures. On the other hand, the degradation of brain tissue

and the resulting loss in elasticity may provide the underpinning

mechanism for the morphological changes observable by MRI

volumetry.

Interaction of global brain atrophy and viscoelastic
parameters

The significant statistical interaction between volume and m as

observed in this study does not necessarily imply causal correlation

even though both metrics may have one and the same cause.

Viscoelastic parameters of biological tissue are related to the

connectivity and adhesion of cells and tissue building blocks, which

most likely change with age. Yet, since mechanical parameter

recovery involves the analysis of strain, i.e., a geometrical quantity,

the geometry of brain influences our modulus values. The relative

rate of change of total brain volume is about 1/3 that of m. We

thus conclude that the maximum influence of atrophy on brain

MRE does not exceed 33%.

Limitations of the study
2D MRE with a slice thickness of 6 mm limits a voxel-based

comparison of MRE to MRI volumetry. We have therefore

neither normalized MRE data as done in volumetry nor registered

MRE to volume data. In volumetry, normalization increased the

statistical significance in the observed brain atrophy from

R2 = 0.19 (non-normalized brain volume) to R2 = 0.4 (normalized

brain volume) as seen in Figure 5. Aside this improved volume-age

correlation, relative and absolute annual rates of atrophy remained

widely unchanged. Although 3D MRE including full brain

coverage will be mandatory in future studies of volume effects

on brain viscoelasticity, the major conclusions of this study about

Figure 6. Brain shear elasticity modulus averaged over the entire parenchyma visible in four image slices of all volunteers. Linear
and quadratic regression is shown to indicate the order of softening of brain tissue with years of age.
doi:10.1371/journal.pone.0023451.g006
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the impact of aging to brain viscoelasticity are attainable by 2D

MRE. In general, the high sensitivity of brain MRE to age-related

physiological processes motivates further development of the

technique towards a clinical modality capable of quantifying

widespread neuronal tissue degradation not detectable by other

neuroradiological techniques. Brain MRE may particularly benefit

from technical advances in parallel imaging [25], anisotropic

parameter reconstruction [26] and poroelasticity imaging [27].

In summary, we have demonstrated the high sensitivity of

MRE-derived viscoelastic parameters of human brain to physio-

logical aging. The highest rate of change was observed in the

frontal area of the brain, which undergoes steady softening with

0.9% per year. In contrast, the slope of the complex modulus

dispersion remained widely constant throughout the brain, which

is attributed to an unaffected geometrical alignment of mechan-

ically relevant structure elements in brain tissue. Volume-related

parameters such as total brain volume, WM and GM volume, and

BPF were less sensitive to aging, which demonstrates that

viscoelastic parameters are directly related to cerebral tissue

structure changing over the lifespan.
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