Muscle Recovery Following Time Spent in an Intensive Care Unit (ICU) Michael Perrins^{1,2}, Michiel Simons^{1,3}, Helen Marshall^{1,2}, Lucy Hiscox¹, Calum Grey¹, Scott Semple¹, Annette Cooper¹, Lucy Barclay³, Rachael Kirkbride³, Lisa Salisbury³, Colin Brown⁴, Timothy Walsh^{2,4}, Edwin van Beek¹, Neil Roberts¹ and David Griffith^{2,4}. - ^{1.} Edinburgh Imaging facility, The University of Edinburgh, Edinburgh, UK. - ² MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK. - 3. Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK - ^{4.} Anaesthesia, Critical Care and Pain Medicine, The University of Edinburgh, Edinburgh, UK. - ^{5.} The Mentholatum Company Ltd., East Kilbride, UK. # **ICU Muscle Wasting** Figure 1 Ultrasound measurements of tibialis anterior cross-sectional area. (A) Relative cross-sectional area (CSA) during the intervention period (9 \pm 1 days). Solid line, loaded side; dashed line, unloaded side. Values are mean \pm standard error of the mean (SEM). The value at day 1 is equivalent to 100%. (B) Relative CSA decline in the loaded leg (black bars) and the unloaded leg (white bars) for each ICU patient on the final day of the intervention, and mean \pm SEM for all patients. Puthucheary et al., Critical Care, 2010 ### ICU Muscle Weakness # Study Aim Investigate changes in the size and the mechanical properties of muscle as a result of time in ICU and following convalescence #### Methods Patients were recruited following ICU discharge: - 9 Patients (45.60[±15.31] years) - 4 Returned patients (4.5[±1] months) - 8 Age matched controls (43.82[±12.05] years) - Recruitment is ongoing Multi-frequency MRE was employed (25, 32.5, 50, 62.5Hz)¹ - Loudspeaker thigh cuff actuator Group comparisons of muscle CSA and |G*| through ROI analysis #### Muscle Size # Muscle Stiffness Healthy Controls **Discharged ICU Patients** Returned ICU Patients (4.5[±1] Months) kPa 0 ## Control and Discharged Patients ## ICU Patients at Discharge and after Convalescence #### Control and ICU Patients after Convalescence # Results Summary Average muscle CSA and |G*| at ICU patient discharge was significantly lower than healthy controls, with an increase following convalescence (4.5[±1] Months) Muscle |G*| and CSA correlation: - Healthy controls (R^2 =.24; **p**=.017) - Discharged patients (R²=.017; **p**=.872) - Returning patients (R^2 =-.015; **p**=.930) ## Discussion Increased Semimembranosus |G*| is a new finding for critical care research, and shows the importance of whole thigh physiotherapy # **Increased Hamstring Stiffness** Muscle shortening following immobility¹, reduced joint range² and Increased muscle stiffness³ Healthy Individual Recovering ICU Patient ### Conclusion Using MRE we have shown that both muscle CSA and |G*| significantly decrease whilst in ICU, however following a period of 4.5 months, do show signs of recovery These results also suggest greater focus should be placed on Hamstring stretches to reduce the amount of muscle strain ## Acknowledgements #### Supervisors Professor Neil Roberts Professor Edwin van Beek #### **MRE Edinburgh** Dr. Michiel Simons Lucy Hiscox Helen Marshall **Mentholatum**Colin Brown #### **Edinburgh Critical Care** **Professor Timothy Walsh** Dr. David Griffith Dr. Lisa Salisbury Dr. Rachael Kirkbride Lucy Barclay # **Edinburgh** Imaging www.ed.ac.uk/edinburgh-imaging #### **Edinburgh Imaging Facility** Dr. Calum Grey Dr. Scott Semple Annette Cooper Radiography Staff Patients and Participants